
Wireless Networking
Course code: CS4222/5422, Assignment #2

Important Instructions: This assignment must be completed collaboratively by all
members of the group. A statement of work detailing the contributions of each member to
the assignment, along with the source code, must be uploaded to Canvas. Additionally, a
brief video demonstrating the assignment is also required to be recorded and uploaded.

Objective of the assignment
This assignment is designed to facilitate the application of concepts learned
in the lectures, focusing on sensors and actuators. You will become
acquainted with programming sensors on the sensor tag platform. Your task
involves programming the Contiki operating system to detect certain physical
phenomena, processing the corresponding sensor data, and subsequently to
initiate a response by activating the actuators on the platform. In the context
of the Contiki OS, this assignment will involve learning about event
scheduling, timer programming, and programming of sensors and actuators.

Introduction
The Texas Instruments Sensor Tag CC2650 is an example of a wireless
embedded system or IoT platform, featuring ten sensors to measure light,
sound, motion, magnetic fields, and temperature. This platform offers wireless
networking capabilities through BLE and ZigBee standards. Designed for
energy efficiency, sensor tag can operate for extended periods on small
power sources such as coin cell batteries, albeit with constrained
computational and memory resources on its microcontroller.

As a result, these embedded platforms do not run conventional operating
systems such as Windows or Linux. Instead, these constrained IoT devices
utilize operating systems like Contiki, an open-source system originally
developed in Sweden by Adam Dunkels. Supported by a global community of
developers, Contiki OS is designed for low-power microcontrollers, facilitating
wireless networking and supporting various communication protocols and
standards across a broad spectrum of platforms, including the SensorTag.

ContikiOS: https://github.com/contiki-ng/contiki-ng

Program execution within Contiki OS operates on an event-driven basis, with
timers serving as one significant source of these events. Contiki offers a
comprehensive suite of timer libraries for this purpose. In this assignment,
you will explore the utilization of both the etimer and rtimer. Timers in Contiki

https://github.com/contiki-ng/contiki-ng

are managed using the struct timer data structure, and their operation is
controlled through three specific function calls.

• timer_set(): used to initialize and starts the expiration time.
• timer_reset(): used to restart the timer from previous expire time.
• timer_restart(): used to restart the timer from current time.

There are several differences between the two timers. Firstly, the difference
stems from etimer and rtimer time resolution. etimer’s clock resolution
depends on the number of clock ticks per second (CLOCK_SECOND), while
rtimer uses RTIMER_SECOND. Another difference is that programming style;
Etimer uses a more “sequential” model while rtimer uses callbacks. Let us try
to look at code involving these timers to understand these differences.

Sample code involving the use of etimer:

PROCESS_THREAD(example_process, ev, data)
{
PROCESS_BEGIN();
etimer_set(&timer_etimer, CLOCK_SECOND); /* Delay 1 second */
while(1) {
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer_etimer));
etimer_reset(&timer_etimer);
}
PROCESS_END();
}

Sample code involving the use of rtimer:

PROCESS_THREAD(process_rtimer, ev, data)
{
PROCESS_BEGIN();
init_opt_reading();
while(1) {
rtimer_set(&timer_rtimer, RTIMER_NOW() + RTIMER_SECOND, 0,
do_rtimer_timeout, NULL);
PROCESS_YIELD();
}
PROCESS_END();
}

You can find additional documentations regarding timers in the following link
https://docs.contiki-ng.org/en/develop/doc/programming/Timers.html

https://docs.contiki-ng.org/en/develop/doc/programming/Timers.html

Example Programs for performing Sensing, Actuation

We provide you three programs ton help you conduct the assignment.

• etimer-buzzer.c: a sample program that shows how to use the etimer
and the buzzer

• rtimer-lightSensor.c: a sample program that shows how to read from the
light sensor

• rtimer-IMUSensor.c: a sample program that shows how to read from the
IMU sensor

• Makefile: Helps you compile the program

Important: Create a new directory inside contiki-ng/examples folder. Paste all
the files inside this directory and then compile.
Please download, understand, compile and then execute the above program.
You can monitor some of the steps of the program by observing the console
for the output generated using printf statements. Please do note that to
compile these programs your makefile should include names of the program.

CONTIKI_PROJECT = etimer-buzzer rtimer-lightSensor
rtimer-IMUSensor

Specific tasks to be performed for the assignment
All the tasks are mandatory. Hence, make an effort to complete all of them.
Task 1: Finding the clock resolution for rtimer and etimer
Please program the device with the program etimer-buzzer. From the output
of these program, please observe and note down the value of
CLOCK_SECOND. Also please find out how many clock ticks corresponds to
one second. Next, please program the devices with the rtimer-lightSensor
and note down the value of RTIMER_SECOND from the output of the
program. Please find out how many clock ticks corresponds to one second.
Mention this as part of report to be submitted for the project.

Task 2: Buzzer actuation by tracking light and motion sensor
You next task is to interface light sensor and to actuate the buzzer.

https://ambuj.se/etimer-buzzer.c
https://weiserlab.github.io/wirelessnetworking/rtimer-lightSensor.c
https://weiserlab.github.io/wirelessnetworking/rtimer-IMUSensor.c
https://weiserlab.github.io/wirelessnetworking/Makefile

You will write a program to implement state machine similar to the one shown
above. The program starts in the IDLE state. Upon detecting a substantial
change in light or significant movement, it transitions to the BUZZ state. In
this state, the sensor tag activates its buzzer to emit a sound for 2 seconds.
Subsequently, the program enters the WAIT state, where it pauses for 2
seconds before reactivating the buzzer for another 2 seconds. This sequence
is repeated several times. Finally, after a duration of 16 seconds from the
entry into the BUZZ state, the program reverts to the IDLE state.
Please consider the following while writing the program:
• Significant change of light reading is can be defined by a change of more

than 300 lux in intensity. Do not sample the light sensor at a rate higher
than 4 Hertz as the driver does not work well

• Significant motion is defined as picking up or moving of your arm while
holding the sensorTag in your hand. Do not sample the IMU sensor at a
sampling rate higher than 50 Hertz as it may result in unstable behaviour

Task 3: Putting everything together to perform complex task

IDLE BUZZ

WAIT

IDLE Interim

WAIT

Significant motion or
changes in light intensity

After 16 seconds

After 2 secondsAfter 2 seconds

BUZZ

Significant motion
Significant
light change

4 seconds2 seconds

Significant
light change

You will develop a sophisticated state machine for the program similar to the
one shown above. The program starts with state machine in the IDLE mode.
Upon sensing significant motion, it transitions to an INTERIM state. While in
the INTERIM state, should there be a significant change in light intensity, the
program shifts to the BUZZ state. In this state, the sensor tag triggers the
buzzer, producing a sound for approximately 2 seconds. Following this, the
program proceeds to the WAIT state, where it pauses for 4 seconds before
reactivating the buzzer for an additional 2 seconds. This cycle of state
transitions persists; however, upon detecting a significant change in light
intensity once more, the program reverts to the IDLE state.

Demonstration, Submission Guidelines and Deadline
The deadline for submission of the assignment is March 18, 2024. This
assignment needs to be done with members of the designated group.

Please submit a readme file, source code, statement of work and a video
demonstrating the operation of the sensor tag. They need to be submitted
onto the canvas portal. The statement of work should describe the
contribution made by every member of the group to the assignment. You
need to submit the source code for Task 2 and Task 3 as separate files. Only
one member of the group should submit the assignment on the canvas.

There will be a penalty of 10% per day after 18th of March 2024.

The readme file should contain the following:

• Value of CLOCK_SECOND
• Number of clock ticks per second in 1s (real time) using etimer
• Value of RTIMER_SECOND
• Number of clock ticks per second in 1s (real time) using rtimer
• Instruction on how to execute your program
• Name and student ID of the members of the group

